minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
p1(s1(X)) -> X
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> s1(div2(minus2(X, Y), s1(Y)))
↳ QTRS
↳ DependencyPairsProof
minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
p1(s1(X)) -> X
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> s1(div2(minus2(X, Y), s1(Y)))
MINUS2(s1(X), s1(Y)) -> P1(minus2(X, Y))
DIV2(s1(X), s1(Y)) -> MINUS2(X, Y)
DIV2(s1(X), s1(Y)) -> DIV2(minus2(X, Y), s1(Y))
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
p1(s1(X)) -> X
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> s1(div2(minus2(X, Y), s1(Y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MINUS2(s1(X), s1(Y)) -> P1(minus2(X, Y))
DIV2(s1(X), s1(Y)) -> MINUS2(X, Y)
DIV2(s1(X), s1(Y)) -> DIV2(minus2(X, Y), s1(Y))
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
p1(s1(X)) -> X
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> s1(div2(minus2(X, Y), s1(Y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
p1(s1(X)) -> X
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> s1(div2(minus2(X, Y), s1(Y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
POL( MINUS2(x1, x2) ) = max{0, x2 - 1}
POL( s1(x1) ) = x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
p1(s1(X)) -> X
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> s1(div2(minus2(X, Y), s1(Y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
DIV2(s1(X), s1(Y)) -> DIV2(minus2(X, Y), s1(Y))
minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
p1(s1(X)) -> X
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> s1(div2(minus2(X, Y), s1(Y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV2(s1(X), s1(Y)) -> DIV2(minus2(X, Y), s1(Y))
POL( DIV2(x1, x2) ) = max{0, x1 - 1}
POL( s1(x1) ) = x1 + 2
POL( minus2(x1, x2) ) = x1
POL( p1(x1) ) = max{0, x1 - 2}
p1(s1(X)) -> X
minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
minus2(X, 0) -> X
minus2(s1(X), s1(Y)) -> p1(minus2(X, Y))
p1(s1(X)) -> X
div2(0, s1(Y)) -> 0
div2(s1(X), s1(Y)) -> s1(div2(minus2(X, Y), s1(Y)))